154 research outputs found

    Joint Access and Backhaul Resource Management in Satellite-Drone Networks: A Competitive Market Approach

    Full text link
    In this paper, the problem of user association and resource allocation is studied for an integrated satellite-drone network (ISDN). In the considered model, drone base stations (DBSs) provide downlink connectivity, supplementally, to ground users whose demand cannot be satisfied by terrestrial small cell base stations (SBSs). Meanwhile, a satellite system and a set of terrestrial macrocell base stations (MBSs) are used to provide resources for backhaul connectivity for both DBSs and SBSs. For this scenario, one must jointly consider resource management over satellite-DBS/SBS backhaul links, MBS-DBS/SBS terrestrial backhaul links, and DBS/SBS-user radio access links as well as user association with DBSs and SBSs. This joint user association and resource allocation problem is modeled using a competitive market setting in which the transmission data is considered as a good that is being exchanged between users, DBSs, and SBSs that act as "buyers", and DBSs, SBSs, MBSs, and the satellite that act as "sellers". In this market, the quality-of-service (QoS) is used to capture the quality of the data transmission (defined as good), while the energy consumption the buyers use for data transmission is the cost of exchanging a good. According to the quality of goods, sellers in the market propose quotations to the buyers to sell their goods, while the buyers purchase the goods based on the quotation. The buyers profit from the difference between the earned QoS and the charged price, while the sellers profit from the difference between earned price and the energy spent for data transmission. The buyers and sellers in the market seek to reach a Walrasian equilibrium, at which all the goods are sold, and each of the devices' profit is maximized. A heavy ball based iterative algorithm is proposed to compute the Walrasian equilibrium of the formulated market

    Advancing Medical Imaging with Language Models: A Journey from N-grams to ChatGPT

    Full text link
    In this paper, we aimed to provide a review and tutorial for researchers in the field of medical imaging using language models to improve their tasks at hand. We began by providing an overview of the history and concepts of language models, with a special focus on large language models. We then reviewed the current literature on how language models are being used to improve medical imaging, emphasizing different applications such as image captioning, report generation, report classification, finding extraction, visual question answering, interpretable diagnosis, and more for various modalities and organs. The ChatGPT was specially highlighted for researchers to explore more potential applications. We covered the potential benefits of accurate and efficient language models for medical imaging analysis, including improving clinical workflow efficiency, reducing diagnostic errors, and assisting healthcare professionals in providing timely and accurate diagnoses. Overall, our goal was to bridge the gap between language models and medical imaging and inspire new ideas and innovations in this exciting area of research. We hope that this review paper will serve as a useful resource for researchers in this field and encourage further exploration of the possibilities of language models in medical imaging

    Multiuser Resource Allocation for Semantic-Relay-Aided Text Transmissions

    Full text link
    Semantic communication (SemCom) is an emerging technology that extracts useful meaning from data and sends only relevant semantic information. Thus, it has the great potential to improve the spectrum efficiency of conventional wireless systems with bit transmissions, especially in low signal-to-noise ratio (SNR) and small bandwidth regions. However, the existing works have mostly overlooked the constraints of mobile devices, which may not have sufficient capabilities to implement resource-demanding semantic encoder/decoder based on deep learning. To address this issue, we propose in this paper a new semantic relay (SemRelay), which is equipped with a semantic receiver to assist multiuser text transmissions. Specifically, the SemRelay decodes semantic information from a base station and forwards it to the users using conventional bit transmission, hence effectively improving text transmission efficiency. To study the multiuser resource allocation, we formulate an optimization problem to maximize the multiuser weighted sum-rate by jointly designing the SemRelay transmit power allocation and system bandwidth allocation. Although this problem is non-convex and hence challenging to solve, we propose an efficient algorithm to obtain its high-quality suboptimal solution by using the block coordinate descent method. Last, numerical results show the effectiveness of the proposed algorithm as well as superior performance of the proposed SemRelay over the conventional decode-and-forward (DF) relay, especially in small bandwidth region.Comment: 6 pages, 3 figures, accepted for IEEE Global Communication Conference (GLOBECOM) 2023 Workshop on Semantic Communication for 6

    Pixel-wise Graph Attention Networks for Person Re-identification

    Full text link
    Graph convolutional networks (GCN) is widely used to handle irregular data since it updates node features by using the structure information of graph. With the help of iterated GCN, high-order information can be obtained to further enhance the representation of nodes. However, how to apply GCN to structured data (such as pictures) has not been deeply studied. In this paper, we explore the application of graph attention networks (GAT) in image feature extraction. First of all, we propose a novel graph generation algorithm to convert images into graphs through matrix transformation. It is one magnitude faster than the algorithm based on K Nearest Neighbors (KNN). Then, GAT is used on the generated graph to update the node features. Thus, a more robust representation is obtained. These two steps are combined into a module called pixel-wise graph attention module (PGA). Since the graph obtained by our graph generation algorithm can still be transformed into a picture after processing, PGA can be well combined with CNN. Based on these two modules, we consulted the ResNet and design a pixel-wise graph attention network (PGANet). The PGANet is applied to the task of person re-identification in the datasets Market1501, DukeMTMC-reID and Occluded-DukeMTMC (outperforms state-of-the-art by 0.8\%, 1.1\% and 11\% respectively, in mAP scores). Experiment results show that it achieves the state-of-the-art performance. \href{https://github.com/wenyu1009/PGANet}{The code is available here}

    Distributed Multi-agent Meta Learning for Trajectory Design in Wireless Drone Networks

    Full text link
    In this paper, the problem of the trajectory design for a group of energy-constrained drones operating in dynamic wireless network environments is studied. In the considered model, a team of drone base stations (DBSs) is dispatched to cooperatively serve clusters of ground users that have dynamic and unpredictable uplink access demands. In this scenario, the DBSs must cooperatively navigate in the considered area to maximize coverage of the dynamic requests of the ground users. This trajectory design problem is posed as an optimization framework whose goal is to find optimal trajectories that maximize the fraction of users served by all DBSs. To find an optimal solution for this non-convex optimization problem under unpredictable environments, a value decomposition based reinforcement learning (VDRL) solution coupled with a meta-training mechanism is proposed. This algorithm allows the DBSs to dynamically learn their trajectories while generalizing their learning to unseen environments. Analytical results show that, the proposed VD-RL algorithm is guaranteed to converge to a local optimal solution of the non-convex optimization problem. Simulation results show that, even without meta-training, the proposed VD-RL algorithm can achieve a 53.2% improvement of the service coverage and a 30.6% improvement in terms of the convergence speed, compared to baseline multi-agent algorithms. Meanwhile, the use of meta-learning improves the convergence speed of the VD-RL algorithm by up to 53.8% when the DBSs must deal with a previously unseen task
    corecore